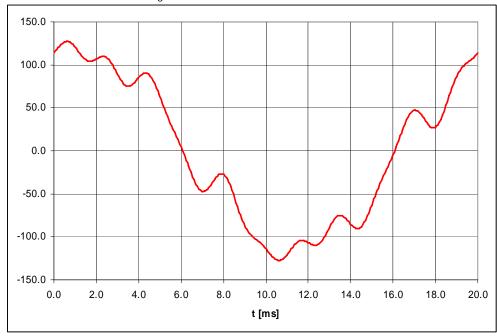
1 Harmonic Load Characteristic



A harmonic load has the following current waveform:

and the corresponding data must be inputted in DIgSILENT PowerFactory.

The waveform is periodic with a period of 50 Hz. The frequency of 50 Hz is therefore considered the fundamental one. A waveform, as a general rule, can therefore be represented as:

$$i(t) = \sum_{h=1}^{N} (a_h \cdot \cos(h\omega t) + b_h \cdot \sin(h\omega t)) = \sum_{h=1}^{N} c_h \cdot \cos(h\omega t + \varphi_h)$$
[1]

and where $\omega = 2\pi \cdot f = 2\pi \cdot 50$ Hz.

The values of the modules c_h and of the phase ϕ_h can be easily found from a_h and b_h : $c_h \cdot \cos(h\omega t + \varphi_h) = c_h \cdot \cos(\varphi_h) \cdot \cos(h\omega t) - c_h \cdot \sin(\varphi_h) \cdot \sin(h\omega t);$

thus:

$$a_{h} = +c_{h} \cdot \cos(\varphi_{h});$$

$$b_{h} = -c_{h} \cdot \sin(\varphi_{h});$$
thus:

$$c_{h} = \sqrt{a_{h}^{2} + b_{h}^{2}} \qquad [2.1];$$

$$\varphi_{h} = \arctan\left(\frac{-b_{h}}{a_{h}}\right) \qquad [2.2].$$

Harmonic Spectre

h	a _h	b _h	C _h	φ _h [rad]	φ _h [deg]
1	105	48	115.45	-0.428778	-24.5672
5	12	11	16.28	-0.741947	-42.5104
7	3	-9	9.49	1.249046	71.5651
11	-6	5	7.81	-2.446854	-140.1944

The FFT of this waveform shows that it contains only 4 harmonics: h = 1, 5, 7, 11, where h is the harmonic order. The values of the harmonic coefficients are:

In order to input the data in PowerFactory, the amplitudes c_h must be espressed in % of c_1 and the phase angles must be referred to the phase angle of the 1st harmonics.

The conversion of the amplitudes in % of c_1 is very easy:

$$c_{h,\%} = 100 \frac{c_h}{c_1}$$
[3]

while the change of reference angle must be considered more carefully.

The simple operation of subtracting ϕ_1 to each ϕ_h is wrong.

The correct operation corresponds to change the time origin, in such a way that the 1st harmonics becomes a pure cosine ($\varphi_1 = 0$). Therefore, within the new origin a new time quantity can be defined:

$$\cos(\omega \hat{t}) = \cos(\omega t + \varphi_1) \qquad [4.0];$$

therefore:

$$\hat{t} = t + \frac{\varphi_1}{\omega}$$
 [4.1];

and also:

$$t = \hat{t} - \frac{\varphi_1}{\omega}$$
 [4.2].

As a consequence, all the other harmonics can be written as:

[5].

$$c_{h} \cdot \cos(h\omega t + \varphi_{h}) = c_{h} \cdot \cos\left(h\omega\left(\hat{t} - \frac{\varphi_{1}}{\omega}\right) + \varphi_{h}\right) = c_{h} \cdot \cos\left(h\omega\hat{t} - h\varphi_{1} + \varphi_{h}\right) = c_{h} \cdot \cos\left(h\omega\hat{t} + \hat{\varphi}_{h}\right)$$
[4.3],

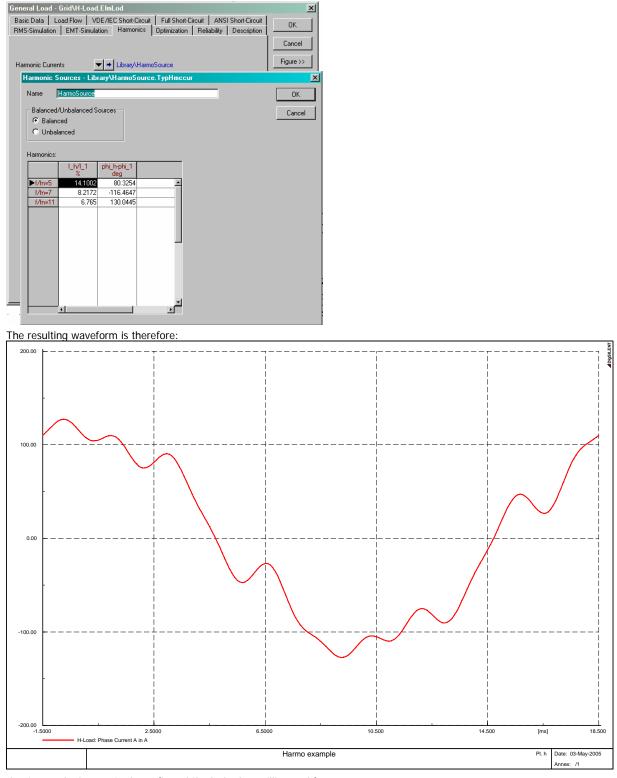
where:

$$\hat{\varphi}_h = +\varphi_h - h\varphi_1$$

Using [3] and [5], the data to be inputted are (the angle values are reported in the interval -180°÷180° by adding k·360°):

h	c _h [%]	φ _h [deg], referred to 1st harmonics
1	100.0000	0.0000
5	14.1002	80.3254
7	8.2172	-116.4647
11	6.7650	130.0445

data input in the load mask of DigSILENT P.F.:



that is exactly the required one (just shifted of a few milliseconds).