

DIgSILENT Technical Documentation

Data conversion for 4-wire line model

DIgSILENT GmbH

Heinrich-Hertz-Strasse 9 D-72810 Gomaringen Tel.: +49 7072 9168 - 0 Fax: +49 7072 9168-88

http://www.digsilent.de e-mail: mail@digsilent.de

Data conversion for 4-wire line model

Published by DIgSILENT GmbH, Germany

Copyright 2005. All rights reserved. Unauthorised copying or publishing of this or any part of this document is prohibited.

22 Dezember 2005

Table of Contents

1 Unbalance 4-wire line equations:	. 4
1.1 Measurement between phase A and phase B	2
1.2 Measurement between neutral and ground (PE)	5
1.3 Measurement between phase and ground (PE)	6
1.4 Measurement between phase and neutral	6

1 Unbalance 4-wire line equations:

$$\begin{bmatrix} Ua \\ Ub \\ Uc \\ Un \end{bmatrix} = \begin{bmatrix} Zs & Zm & Zm & Zpn \\ Zm & Zs & Zm & Zpn \\ Zm & Zm & Zs & Zpn \\ Zpn & Zpn & Zpn & Zn \end{bmatrix} \cdot \begin{bmatrix} Ia \\ Ib \\ Ic \\ In \end{bmatrix}$$
(1)

$$Zs = \frac{1}{3} (Z0 + 2 \cdot Z1) \tag{2}$$

$$Zm = \frac{1}{3}(Z0 - Z1) \tag{3}$$

1.1 Measurement between phase A and phase B wire

Phase-phase measurement

Using equation (1)

$$Ua = Zs \cdot Ia + Zm \cdot Ib$$

 $Ub = Zm \cdot Ia + Zs \cdot Ib$

and

$$Ia = -Ib$$

$$Ua - Ub = 2Ia \cdot (Zs - Zm \cdot)$$

With equation (2) and (3)

$$\frac{Ua - Ub}{Ia} = 2 \cdot Z1$$

The positive sequence impedance Z1 will be received as the result of the phase to phase measurement.

Input data in PowerFactory: R1, X1 (Z1)

1.2 Measurement between neutral and PE (earth) wire

Neutral -PE measurement

Using equation (1) with Ia=Ib=Ic=0:

$$Un = Z(N - PE) \cdot In$$

$$\frac{Un}{In} = Z(N - PE)$$
 with $Z(N - PE) = Zneutral + Ze$

The Z(N-PE) impedance will be received as the result of the neutral – ground (PE) measurement.

Input data in PowerFactory: Neutral impedance (Rn, Xn)

$$Zn = Z(N - PE)$$

1.3 Measurement between phase and PE (earth) wire

Phase - PE (earth wire) measurement

Using equation (1) with In = 0

$$U = 1/3 \cdot (Zs \cdot I + Zm \cdot I + Zm \cdot I)$$

With equation (2) and (3):

$$U = 1/3 \cdot Z0 \cdot I$$

$$Z0(PH - E) = Z0 = \frac{3 \cdot U}{I}$$

Input data in PowerFactory: Zero-sequence impedance (R0, X0)

$$Z0 = Z0(PH - E)$$

1.4 Measurement between phase and neutral wire

Phase – neutral measurement

Using equation (1):

$$U = 1/3 \cdot (Zs \cdot I + Zm \cdot I + Zm \cdot I) + Zpn \cdot In$$

$$Un = 1/3 \cdot I \cdot (Zpn + Zpn + Zpn) + Zn \cdot In$$

With:

$$In = -In$$

$$U = 1/3 \cdot (Zs \cdot I + Zm \cdot I + Zm \cdot I) - Zpn \cdot I$$

$$Un = 1/3 \cdot I \cdot (Zpn + Zpn + Zpn) - Zn \cdot I$$

With equation (2) and (3):

$$U = 1/3 \cdot Z0 \cdot I - Zpn \cdot I$$
 and $Un = I \cdot (Zpn - Zn)$

Subtraction of both equations:

$$Z0(PH - N) = \frac{3 \cdot (U - Un)}{I} = Z0 - 6 \cdot Zpn + 3 \cdot Zn$$

Zn from measurement neutral to ground, Z0 from measurement phase to ground (PE)

$$Zpn = \frac{Z0 + 3 \cdot Zn - Z0(PH - N)}{6} \tag{4}$$

Input data in PowerFactory: Phase-neutral coupling impedance (Rpn, Xpn)

1.5 Data conversion without N-PE measurement

If the measurement between the neutral and the PE (earth) wire does not exist the following simplification can be assume:

Phase - neutral wire measurement:

$$Z0(PH - N) = Z1 + 3 \cdot Zneutral \tag{5}$$

Phase - PE (earth) wire measurement:

$$Z0(PH - E) = Z1 + 3 \cdot Ze \tag{6}$$

The neutral – PE (earth) wire measurement is:

$$Z(N-E) = Zneutral + Ze$$

With equation (5) and equation (6)

$$Z(N-E) = Zn = \frac{Z0(PH-N) + Z0(PH-E) - 2 \cdot Z1}{3}$$
(7)

Using equation (4), (5) and (6)

$$Zpn = Ze = \frac{Z0(PH - E) - Z1}{3} \tag{4}$$

Input data in PowerFactory:

Zero-sequence impedance (R0,X0)

$$Z0 = Z0(PH - E)$$

Neutral impedance (Rn, Xn)

$$Zn = \frac{Z0(PH - N) + Z0(PH - E) - 2 \cdot Z1}{3}$$

Input data in PowerFactory: Phase-neutral coupling impedance (Rpn, Xpn)

$$Zpn = \frac{Z0(PH - E) - Z1}{3}$$